
Quantitative Dispersion Analysis of Inclusions in Polymer
Composites
Mostafa Yourdkhani and Pascal Hubert*

Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 3C0, Canada

ABSTRACT: The state of dispersion plays an important role on the performance of polymer nanocomposites. Dispersion is
usually assessed based on the qualitative evaluation of microscopy micrographs. In this paper, a quantitative algorithm is
introduced for analyzing the dispersion of inclusions in polymer composites using image analysis. In a binary image, on-pixels are
considered as particle elements while off-pixels stand for matrix elements. To quantify the dispersion, the mean distance value
between any matrix elements to their corresponding nearest neighboring particle element is measured. A dispersion index, DI, is
then defined by comparing the image of interest with the associated uniformly dispersed case. Synthetic models were utilized to
examine the sensitivity of the algorithm to various dispersity scenarios such as the effect of particle size, clustering, and cluster
distribution. Optical micrographs of carbon nanotube modified epoxy with different states of dispersion were also employed to
assess the applicability and functionality of the algorithm to real micrographs.
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1. INTRODUCTION

The state of dispersion is one of the key parameters in the
synthesis of carbon nanotube (CNT) modified polymers.1−4

CNTs are commercially available in the form of entangled
bundles; this entanglement is caused by the large van der Waals
attraction that exists between individual nanotubes owing to
their large specific surface area and aspect ratio.5−7 As a result,
it is necessary to apply a sophisticated method to efficiently
separate and disperse CNTs inside the polymer matrix. To
exploit the full potential of CNTs in the mechanical reinforce-
ment of polymers, a uniform dispersion with minimum number
and size of aggregates is desirable; however, it may not be always
possible to reach the full state of dispersion because of the
reasons mentioned above.
Various techniques have been used to analyze the dispersion

of nanoparticles inside polymers. Kim et al.8 analyzed the
dispersion of CNTs inside epoxy using the results of differential
scanning calorimetry (DSC). They assumed that CNTs'
dispersion hinders the full cross-linking of epoxy resin resulting
in lower heat of reaction. Dispersion was then analyzed based
on the degree of cross-linking. This method requires running DSC
experiments on all samples, which is costly and time-consuming,
and the concept is not generally accurate since low volume

fractions of CNTs cannot significantly alter the cross-linking of
thermosetting resin. Raman spectroscopy was also used to
characterize the dispersion of CNTs in an aqueous solution.9,10

The intensity of a Raman peak at 267 cm was used as a basis to
measure the degree of agglomeration. This method not only
requires performing spectroscopy experiments on the samples,
but also requires further knowledge and analysis of the results
obtained from the spectroscopy measurements.
Apart from these methods, various types of microscopy

observations have been widely employed to visually analyze the
state of dispersion. Observations are usually made at two levels
of hierarchy, that is, microscale and nanoscale. Optical mi-
croscopy is employed to visualize the dispersion of CNTs
aggregates at the microscale11,12 while scanning electron mi-
croscopy (SEM), transmission electron microscopy (TEM), and
atomic force microscopy (AFM) can identify the dispersion of
individual nanotubes or CNT bundles at the nanoscale.13−18

The information obtained from nanoscale observations is
restricted to a very small area of the sample, which may not be
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the representative of the overall dispersion. Besides, the time
and cost of scanning a large area of the sample with electron
microscopy are prohibitive. Optical microscopy on the other
hand can provide useful information about the size of aggre-
gates at the microscale. In dispersion analysis, it is always
practical to observe the dispersion quality first at the microscale
to identify the distribution of aggregates. If the microscale
dispersion is acceptable, nanoscale microscopy can then be
used to visualize the dispersion of individual nanoparticles in
more detail.
The dispersion analysis of images obtained from microscopy

techniques are usually performed qualitatively to distinguish
between a good and a bad dispersion; however, it is not always
easy to visually examine the state of dispersion. Therefore, it is
necessary to develop a robust algorithm that can automatically
evaluate the state of dispersion. Luo and Koo19−21 proposed a
method to quantify the dispersion of various particles inside a

polymer matrix by measuring the free-path spacing between
the particle surfaces. A probability density function was then
used to define a dispersion quantity parameter. In their
method, the effect of particle size, shape, and clustering was
not taken into consideration. Glaskova et al.22,23 used the same
approach but measured the particle size to determine the
quality of dispersion. Dispersion was recognized to be good
if particles of uniform size are dispersed inside the matrix.
However, particle distribution is not considered in their
method. In another study, Yazdanbakhsh et al.24,25 defined the
concept of “dispersive work”, which is the work required to
transfer particles to a uniform distribution, to quantify the
dispersion of inclusions in composites. Bakshi et al.26 defined a
clustering parameter by measuring the fraction of distances
between the centroids of CNTs that are less or equal to five
times the CNT diameter. In other studies, the size distribution
of filler aggregates has been used as a criterion to analyze the
dispersion.27−29 In a recent study, Li et al.30 quantified the
dispersion based on calculating the probability density function
of the kernel density for an image and comparing it with a
uniform dispersion.
Although the preceding methods can capture some aspects of

particle dispersion, the need still remains for a robust and
comprehensive method that can take all aspects into con-
sideration. In this article, a novel algorithm for the quantitative
dispersion analysis of particles in composites is proposed.

2. DISPERSION QUANTIFICATION ALGORITHM

The complete dispersion of individual nanoparticles is
necessary for exploiting their large surface-to-volume ratio. In
a uniform dispersion, each individual particle is distributed
evenly throughout the matrix such that the minimum distance
between the particles is maximized. Deviation from a uniform
dispersion occurs when the particles of different sizes or particle

Figure 1. Representative binary image showing pixels of matrix
(white) and particle (black) elements. The distance between a matrix
element to the nearest neighboring particle element, di, is shown.

Figure 2. Synthetic model showing the case of (a) ideal uniform dispersion (DI = 1.00); (b) agglomerated dispersion (DI = 4.21). The
corresponding nearest neighbor distance distribution is illustrated in (c) for the image in (a), and in (d) for the image in (b). Colorbar depicts the
distribution of distances in the units of number of elements.
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clustering are observed. To distinguish between different states
of dispersion, a new algorithm is proposed here. It is assumed
here that there is enough contrast between particles and
background in the dispersion image. In this algorithm, any pixel
in a binary image is referred as an “element”. A white pixel re-
presents a “matrix element” while a black pixel denotes a “particle
element” (see Figure 1). It is noteworthy to mention that the
existing algorithms in the literature are based on the distance
between particle elements whereas the proposed algorithm relies
on the distance between the matrix elements and particle elements.
For a given dispersion image, the distance between a matrix

element to the nearest neighboring particle element, di, is
computed (Figure 1). The mean value of all nearest neighbor
distances, μ, can be obtained by

μ =
∑ = d

N
i
N

i

m

1
m

(1)

where Nm is the number of matrix elements. The value of μ
represents how the matrix elements are positioned around the
particle elements. It should be mentioned that for the elements
close to the edge of the micrograph, the calculated distances
are restricted to the neighboring elements that exist in the
micrograph; however, to include the information from the
neighboring regions in the analysis, periodic boundary
conditions are assumed here along different directions. As a
result, the nearest neighbor distances are calculated for a larger
representative area of the sample.
The proposed algorithm was implemented in MATLAB

(The MathWorks, Natick, MA, U.S.A.). First, each image was
converted into a binary image whose information was stored
into an array. Using an array operation, the nearest neighboring
particle element to each matrix element was found and the
corresponding distance was computed. Then, the mean value of

all the computed distances was obtained. Let us consider two
extreme cases: an ideal uniform dispersion and an agglomerated
dispersion (Figures 2a and b). In each case, 25 identical spherical
particles with an areal fraction of 5% in a 400 × 400 elements
matrix domain are considered. The distribution of nearest neighbor
distances for the two cases is shown in Figures 2c and d,
respectively. These figures are plotted also in MATLAB based on
the values of nearest neighbor distances obtained from the array
operations as explained in the previous part. The color assigned to
each element displays how far (in units of number of elements)
that element is to its nearest particle element; for instance, an
element with a red color has the highest distance to its nearest
particle element compared with the other elements in the figure.
Besides, the colorbar on each image indicates the value of the
nearest neighbor distance associated with each color.
For the uniform dispersion (Figure 2a), all particles are com-

pletely surrounded by the matrix and are distributed uniformly
within the image resulting in an even distribution of nearest
neighbor distances with small mean value. However, for the
agglomerated dispersion (Figure 2b), the minimum fraction of
the matrix is influenced by the particles. In this case, the value
of nearest neighbor distance increases as the matrix elements
get farther from the agglomerated region.
To compare the dispersion of different systems with different areal

fractions, the mean nearest neighbor distance introduced in eq 1 is
normalized with respect to the corresponding ideal dispersed image.
To find the ideal uniformly dispersed case for a given image,

it is assumed that any aggregates or bundles of particles that exist in
the image are broken down to the separate individual particles.
If individual particles cannot be recognized, which is the case in
optical micrographs obtained from the dispersion of nanoparticles,
individual particle element is considered instead. Once the in-
dividual particles are determined, they are positioned in a uniformly

Figure 3. Synthetic model showing the case of (a) random dispersion (DI = 1.07); (b) clustered dispersion (DI = 3.39). The corresponding nearest
neighbor distance distribution is illustrated in (c) for the image in (a), and in (d) for the image in (b). Colorbar depicts the distribution of distances
in the units of number of elements.
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dispersed arrangement via the maximin algorithm assuming a
space-filling and noncollapsing dispersion (Figure 2a).31,32

Finally, the corresponding mean nearest neighbor distance
for the ideal uniformly dispersed image, μu, is calculated as

μ =
∑ = d

Nu
i
N

u i

m

1 ,
m

(2)

where du,i is the distance between each matrix element to the
nearest neighboring particle element. μu represents the minimum
feasible value of the mean nearest neighbor distance that one can
obtain for the given image of dispersion. A dispersion index, DI, is
then defined as

μ
μ

=DI
u (3)

DI indicates how far the dispersion is from the case of ideal
uniform dispersion. Therefore, DI = 1 for a uniformly dispersed
system whereas its value increases as the dispersion gets worse.
In the following sections, synthetic and real images are used to
validate the proposed algorithm with different dispersity scenarios.

3. APPLICATION OF THE PROPOSED ALGORITHM ON
SYNTHETIC MODELS

To assess the sensitivity of the proposed algorithm to different
dispersity scenarios, different synthetic models are produced
that will be explained in detail in the following subsections.
Similar to the images used in Figure 2, each model image
consists of 25 identical spherical particles with an areal fraction
of 5% in a 400 × 400 elements matrix domain unless otherwise
specified.
3.1. Effect of Particle Clustering. Clustering is mainly

related to the distribution of particles within the matrix. If
particles are homogenously distributed, more regions of matrix

are influenced with the particles resulting in a good reinforcing
behavior. However, if clustering takes place, particles concen-
trate in certain regions leaving the rest of the matrix uncovered.
In Figure 3a, a relatively well-dispersed model is compared with
a clustered dispersion in Figure 3b. The corresponding plots of
nearest neighbor distance distribution are shown in Figures 3c
and d. When the particles form a cluster, they do not allow the
matrix to fully exfoliate them and as a result, most of the matrix
regions are left uncovered with particles. Hence, a small portion
of the matrix elements are close to the clustered particles and
the rest are located at farther distances. In this situation,
variation in the values of the nearest neighbor distances is
significantly large with a large value of DI indicating a poor state
of dispersion.

3.2. Effect of Particle Size. Ideal dispersion favors
breaking the aggregates down to the individual particles. If
aggregates or bundles of particles are present in a system, the
surface-to-volume ratio is reduced and less effective reinforce-
ment is achieved. It is of great interest to disperse particles
individually to cover as much of the matrix regions as possible.
Particle size becomes an issue when analyzing the dispersion
of nanoparticles in optical micrographs. Obviously, particles that
are observed in the optical micrographs are the aggregates of
nanoparticles rather than individual nanoparticles. A good
microscale dispersion is achieved if particles (aggregates) with
small size are formed. To investigate the effect of particle size, the
25 identical particles in Figure 4a are rearranged to form nine larger
particles in Figure 4b while maintaining the areal fraction fixed.
Figures 4c and d present the nearest neighbor distance distribution
for the cases in Figures 4a and b, respectively. As particles enlarge
because of aggregation from Figure 4a to Figure 4b, the fraction
of the matrix influenced with particles decreases and large distance
values are observed accordingly. As a result, the mean distance

Figure 4. Synthetic model showing the case of (a) dispersion of small particles (DI = 1.04); (b) dispersion of large particles (DI = 1.59). The
corresponding nearest neighbor distance distribution is illustrated in (c) for the image in (a), and in (d) for the image in (b). Colorbar depicts the
distribution of distances in the units of number of elements.

ACS Applied Materials & Interfaces Research Article

dx.doi.org/10.1021/am301459q | ACS Appl. Mater. Interfaces 2013, 5, 35−4138



value and correspondingly DI increases as the particle size increases
indicating a worse state of dispersion.
3.3. Effect of Cluster Distribution. Clusters formation is

not limited to a specific region and can occur at different places
of the matrix. If clusters are distributed into different regions
of the matrix relatively far from each other (Figure 5a), the
matrix can fill the regions between the clusters and thereby
smaller matrix rich regions are found. However, if clusters are
formed relatively close to each other (Figure 5b), particles are
concentrated locally where the chance of reinforcing the
remaining part of the matrix becomes low. As it can be seen
from Figure 5, DI is capable of distinguishing properly between
different cases of clusters distribution.
3.4. Comparison of Synthetic Models. To elucidate

more and compare the state of dispersion for the cases shown
in Figures 2−5, the probability density function (PDF) for the
distribution of the nearest neighbor distances is plotted in
Figure 6. Besides, the corresponding value of DI for each case is
displayed in the legend. A good dispersion is recognized by
small mean and standard deviation values in the PDF curve. For
instance, the PDF of the ideal uniform dispersion (the case in
Figure 2a) is found to have the smallest mean value, highest
peak, and smallest standard deviation. As dispersion deviates from
the uniform state, the curves are shifted toward larger mean values
with larger standard deviation and lower peak height.
As a summary, the synthetic models used here confirm the

sensitivity of the current algorithm to different visually assess-
able states of dispersion.

4. APPLICATION OF THE PROPOSED ALGORITHM ON
REAL MICROGRAPHS

In addition to the synthetic images, real experimental micro-
graphs are employed to explore the validity of the proposed

algorithm. Multiwall carbon nanotubes (MWNT) were used as
filler particles inside Epon 828 epoxy resin. The MWNTs,
which were supplied by Baytubes, were synthesized based on
chemical vapor deposition (CVD) and had a mean outer
diameter of 13−16 nm with an aspect ratio of around 100 to
500. Isophorone Diamine (IPD) was used as the curing agent
with the resin-to-hardener ratio of 100:23. MWNTs were
mixed with epoxy resin using a high shear mixer, and samples
with MWNT concentration of 0.3 wt.% were prepared. To
investigate the stability of dispersion during the resin cure cycle,
in situ hot stage microscopy was applied. A droplet of sample
was placed on a glass substrate inside a Linkam THMS 600 hot

Figure 5. Synthetic model showing the case of (a) better distribution of clusters (DI = 2.22); (b) worse distribution of clusters (DI = 2.75). The
corresponding nearest neighbor distance distribution is illustrated in (c) for the image in (a), and in (d) for the image in (b). Colorbar depicts the
distribution of distances in the units of number of elements.

Figure 6. PDF of distribution of nearest neighbor distances for the
cases presented in Figures 2−5. The value of DI is also shown in the
legend.
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stage. The hot stage was then placed under an Olympus BX50
transmission optical microscope through which the micro-
graphs were acquired at 250× magnification. A heating rate of
3 °C/min was applied to the sample via the hot stage. Figure 7
illustrates three images that were captured at different tem-
peratures to show the evolution of dispersion during the resin
cure. As the temperature rises, resin viscosity drops, and the
mobility of nanotubes increases resulting in reagglomeration of
CNTs with a poor state of dispersion.29 The algorithm pro-
posed in this study is used to quantitatively assess the state of
dispersion during the resin cure. It is worth mentioning that
since optical micrographs display microscale dispersion, aggre-
gates of CNTs are considered as particle elements in the
dispersion analysis. As a result, dispersion indices (DI) of 1.51,
2.37, and 5.55 were respectively calculated for Figures 7a, b and
c, which indicate the degradation of dispersion with temper-
ature. The results of dispersion quantification are in a good agree-
ment with the visual assessment of dispersion degree con-
firming the practicality and robustness of the proposed algorithm.

5. CONCLUSIONS

A novel algorithm was developed to quantify the dispersion of
inclusions in polymer composites using image analysis.
According to the proposed algorithm, any given image is
divided into matrix and particle elements based on which the
distance between each matrix element to the nearest particle
element is calculated. In a good dispersion, the nearest neighboring
distances are evenly distributed throughout the matrix with the
smallest possible mean value. However, as the dispersion degrades,
the nearest neighbor distances vary from small values in regions
close to particles to large values in regions far from particles. There-
fore, the mean distance value increases accordingly implying the
degradation of dispersion. A dispersion index, DI, is then defined
by comparing the mean value of the nearest neighbor distances for
the given image with that of an ideal uniformly dispersed case.
DI = 1 for the case of ideal uniform dispersion while it increases
as the dispersion degrades.
To assess the sensitivity of the current algorithm to various

dispersity scenarios, synthetic models and real micrographs
were used. The effect of particle size, clustering, and cluster
distribution was examined to verify the robustness and appli-
cability of the proposed algorithm. The algorithm was also
applied on optical micrographs of CNT-modified epoxy to confirm
the visual assessment of dispersion evolution during the resin cure.
As a result, this algorithm can be applied to quantitatively
analyze the state of dispersion of particles inside different matrices
at any scale.
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